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Supplementary Material 
 

This section describes (S1) DeepCNF model, (S2) training methods, (S3) protein features, and (S4) 

performance metric. 

----------------------------------------------------------------------------------------------------------------------------  

 

S1. DeepCNF model 

As shown in Figure 1 in main text, DeepCNF has two modules: (i) the Conditional Random Fields 

(CRF) module consisting of the top layer and the label layer, and (ii) the deep convolutional neural 

network (DCNN) module covering the input to the top layer. When only one hidden layer is used, 

DeepCNF becomes Conditional Neural Fields (CNF), a probabilistic graphical model described in [1].  

 Given a protein sequence of length 𝐿, let 𝑦 = (𝑦1, … , 𝑦𝐿) ∈ Σ𝐿 denote its sequence label where 

𝑦𝑖  is the label at residue 𝑖, and Σ is the set of all possible labels. For instance, for protein disorder 

prediction, Σ = {0,1} where 0 stands for ordered and 1 for disordered. Let 𝑋 = (𝑋1, … , 𝑋𝐿) denote 

the input feature where 𝑋𝑖 is a column vector representing the input feature for residue 𝑖. DeepCNF 

calculates the conditional probability of 𝑦 on the input 𝑋 with parameter 𝜃 as follows,  

𝑃𝜃(𝑦|𝑋) = exp(∑ [𝑓𝜃(𝑦, 𝑋, 𝑖) + 𝑔𝜃(𝑦, 𝑋, 𝑖)]𝐿
𝑖=1 ) /𝑍(𝑋)                   (1) 

Where 𝑓𝜃(𝑦, 𝑋, 𝑖) is the binary potential function specifying correlation among adjacent labels at 

position 𝑖, 𝑔𝜃(𝑦, 𝑋, 𝑖) is the unary potential function modeling relationship between 𝑦𝑖 and input 

features for position 𝑖, and 𝑍(𝑋) is the partition function. Formally, 𝑓𝜃()  and 𝑔𝜃() are defined as 

follows. 

𝑓𝜃(𝑦, 𝑋, 𝑖) = ∑ 𝑇𝑎,𝑏𝛿(𝑦𝑖−1 = 𝑎)𝛿(𝑦𝑖 = 𝑏)𝑎,𝑏                        (2) 

𝑔𝜃(𝑦, 𝑋, 𝑖) = ∑ 𝑈𝑎,ℎ𝐻𝑎,ℎ(𝑋, 𝑖, 𝑊)𝛿(𝑦𝑖 = 𝑎)𝑎,ℎ                       (3) 

Where 𝑎  and 𝑏  represent two specific labels for prediction, 𝛿()  is an indicator function, 

𝐻𝑎,ℎ(𝑋, 𝑖, 𝑊) is a deep neural network function for the ℎ-th neuron at position 𝑖 of the top layer for 

label 𝑎, and 𝑊, 𝑈, and 𝑇 are the model parameters to be trained. Specifically, 𝑊 is the parameter 

for the neural network, 𝑈 is the parameter connecting the top layer to the label layer, and 𝑇 is for 

label correlation. The two potential functions can be merged into a single binary potential function 

𝕗𝜃(𝑦, 𝑋, 𝑖) = ∑ 𝑇𝑎,𝑏
ℎ 𝐻𝑎,𝑏

ℎ (𝑋, 𝑖, 𝑊)𝛿(𝑦𝑖−1 = 𝑎)𝛿(𝑦𝑖 = 𝑏)𝑎,𝑏,ℎ . Note that these deep neural network 

functions for different labels could be shared to 𝐻𝑎,ℎ(𝑋, 𝑖, 𝑊). To control model complexity and avoid 

over-fitting, we add a L2-norm penalty term as the regularization factor. 

 
SFigure 1. The feed-forward connection between two adjacent layers in the deep convolutional neural network. 



 

 SFigure 1 shows two adjacent layers of DCNN. Let 𝑀𝑘 be the number of neurons for a single 

position at the 𝑘-th layer. Let 𝑋𝑖(ℎ) be the ℎ-th feature at the input layer for residue 𝑖 and 𝐻𝑖
𝑘(ℎ) 

denote the output value of the ℎ-th neuron of position 𝑖 at layer 𝑘. When 𝑘 = 1, 𝐻𝑘  is actually the 

input feature 𝑋. Otherwise, 𝐻𝑘  is a matrix of dimension 𝐿 ×  𝑀𝑘. Let 2𝑁𝑘 + 1 be the window size 

at the 𝑘-th layer. Mathematically, 𝐻𝑖
𝑘(ℎ) is defined as follows. 

𝐻𝑖
𝑘(ℎ) = 𝑋𝑖(ℎ),                                        if 𝑘 = 1      () 

𝐻𝑖
𝑘+1(ℎ) = 𝜋(∑ ∑ [𝐻𝑖+𝑛

𝑘 (ℎ′) ∗ 𝑊𝑛
𝑘(ℎ, ℎ′)]

𝑀𝑘
ℎ′=1

𝑁𝑘
𝑛=−𝑁𝑘

),         if 𝑘 < 𝐾      () 

𝐻ℎ(𝑋, 𝑖, 𝑊) = 𝐻𝑖
𝑘(ℎ)                                   if 𝑘 = 𝐾     (4) 

Meanwhile, 𝜋() is the activation function, either the sigmoid (i.e., 1/(1 + exp(−𝑥))) or the tanh (i.e., 

(1 − exp(−2𝑥))/(1 + exp(−2𝑥))) function. 𝑊𝑛
𝑘   (−𝑁𝑘 ≤ 𝑛 ≤ 𝑁𝑘) is a 2D weight matrix for the 

connections between the neurons of position 𝑖 + 𝑛 at layer 𝑘 and the neurons of position 𝑖 at layer 

𝑘 + 1. 𝑊𝑛
𝑘(ℎ, ℎ′) is shared by all the positions in the same layer, so it is position-independent. Here 

ℎ′ and ℎ index two neurons at the 𝑘-th and (𝑘 + 1)-th layers, respectively. See S2.4 about how to 

calculate the gradient of DCNN by back propagation.  

 

----------------------------------------------------------------------------------------------------------------------------  

 

S2. Training methods 

Suppose we have 𝑇 protein sequences for training, and each sequence 𝑡 with length 𝐿𝑡. We study 

the behavior of three different objective functions, namely Log-likelihood, Labelwise accuracy, and the 

AUC function. 

 

S2.1 Log-likelihood 

The log-likelihood is a widely-used objective function for training CRF [2]. Mathematically, the log- 

likelihood is defined as follows: 

                        Log_likelihood = ∑ log𝑃𝜃(𝑦𝑡|𝑋𝑡)𝑇
𝑡=1                         (5) 

Where 𝑃𝜃(𝑦|𝑋) is defined in equation (1).  

 

S2.2 Labelwise accuracy 

Gross et. al. [3] proposed an objective function that could directly maximize the labelwise accuracy 

defined as 

                 Labelwise = ∑ ∑ 𝛿 (𝑃𝜃(𝑦𝑖
(𝜏)

) > 𝑚𝑎𝑥𝑦𝑖≠𝑦𝑖
𝜏 𝑃𝜃(𝑦𝑖))

𝐿𝑡
𝑖=1

𝑇
𝑡=1                 (6) 

Where 𝑦𝑖
(𝜏)

 denotes the real label at position 𝑖, 𝑃𝜃(𝑦𝑖
(𝜏)

) is the predicted probability of the real label 

at position 𝑖 being (𝜏). It could be represented by the marginal probability  

𝑃𝜃(𝑦𝑖
(𝜏)

|𝑋𝑡) =
1

𝑍(𝑋)
∙ ∑ [𝛿(𝑦𝑖 = (𝜏)) ∙ 𝑒𝑥𝑝 (𝔽1:𝐿𝑡(𝑋𝑡 , 𝑦, 𝜃))]𝑦1:𝐿𝑡

             (7) 

where 𝔽𝑙1:𝑙2
(𝑋, 𝑦, 𝜃) = ∑ 𝕗𝜃(𝑦, 𝑋, 𝑖)𝑙2

𝑖=𝑙1
. 

 To obtain a smooth approximation to this objective function, [3] replaces the indicator function 

with a sigmoidal function 𝑄𝜆(𝑥) = 1/(1 + exp(−𝜆𝑥)) where the parameter 𝜆 is set to 15 by default. 

Then it becomes the following form: 

Labelwise ≈ ∑ ∑ 𝑄𝜆(𝑃𝜃(𝑦𝑖
(𝜏)

|𝑋𝑡) − 𝑃𝜃(�̃�𝑖
(𝜏)

|𝑋𝑡))
𝐿𝑡
𝑖=1

𝑇
𝑡=1                  (8) 

Where �̃�𝑖
(𝜏)

 denotes the label other than 𝑦𝑖
(𝜏)

 that has the maximum posterior probability at position 𝑖.  



 

S2.3 The AUC function 

Definition. The AUC of a predictor function 𝑃𝜃  on label 𝜏 is defined as: 

𝐴𝑈𝐶(𝑃𝜃 , 𝜏) = ℙ(𝑃𝜃(𝑦𝑖
𝜏) > 𝑃𝜃(𝑦𝑗

𝜏) |  𝑖 ∈ 𝐷𝜏 , 𝑗 ∈ 𝐷!𝜏)                (9) 

where ℙ() is the probability over all pairs of positive and negative examples, 𝐷𝜏 is a set of positive 

examples with true label 𝜏, and 𝐷!𝜏 is a set of negative examples with true label not being 𝜏. Note 

that the union of 𝐷𝜏 and 𝐷!𝜏 contains all the training sequence positions, i.e., 𝐷𝜏 = ⋃ ⋃ 𝛿𝑖,𝑡
𝜏𝐿𝑡

𝑖=1
𝑇
𝑡=1  

where 𝛿𝑖,𝑡
𝜏  is an indicator function. If the true label of the 𝑖-th position from sequence 𝑡 equals to 𝜏, 

then 𝛿𝑖,𝑡
𝜏  is equal to 1; otherwise 0. Again, 𝑃𝜃(𝑦𝑖

𝜏) could be represented by the marginal probability 

𝑃𝜃(𝑦𝑖
𝜏|𝑋𝑡) from the training sequence 𝑡.  

 Since it is hard to calculate the derivatives of equation (9), we use the following 

Wilcoxon-Mann-Whitney statistic [4], which is an unbiased estimator of 𝐴𝑈𝐶(𝑃𝜃 , 𝜏): 

𝐴𝑈𝐶𝑊𝑀𝑊(𝑃𝜃 , 𝜏 ) =
∑ ∑ 𝛿(𝑃𝜃(𝑦𝑖

𝜏|𝑋)>𝑃𝜃(𝑦𝑗
𝜏|𝑋))

𝑗∈𝐷!𝜏𝑖∈𝐷𝜏

|𝐷𝜏|∙|𝐷!𝜏|
                    (10) 

Finally, by summing over all labels, the overall AUC objective function is  ∑ 𝐴𝑈𝐶𝑊𝑀𝑊(𝑃𝜃 , 𝜏)𝜏 . 

 

Approximation. For a large dataset, the computational cost of AUC by equation (10) is high. Recently, 

Calders et. al. [5] proposed a polynomial approximation of AUC which can be computed in linear time. 

The key idea is to approximate the indicator function 𝛿(𝑥 > 0), where 𝑥 represents (𝑃𝜃(𝑦𝑖
𝜏|𝑋) −

𝑃𝜃(𝑦𝑗
𝜏|𝑋) ), by a polynomial Chebyshev approximation. That is, we approximate 𝛿(𝑥 > 0)  by 

∑ 𝑐𝜇𝑥𝜇𝑑
𝜇=0  where 𝑑 is the degree and 𝑐𝜇 the coefficient of the polynomial [5]. Let 𝑛1 = |𝐷𝜏| and 

𝑛0 = |𝐷!𝜏|. Using the polynomial Chebyshev approximation, we can approximate equation (10) as 

follows. 

𝐴𝑈𝐶𝑊𝑀𝑊(𝑃𝜃 , 𝜏 ) ≈
1

𝑛0𝑛1
∑ ∑ 𝛾𝜇𝑙

𝜇
𝑙=0

𝑑
𝜇=0 𝑠(𝑃𝜃

𝑙 , 𝐷𝜏)𝑣(𝑃𝜃
𝑢−𝑙 , 𝐷!𝜏)           (11) 

where 𝛾𝜇𝑙 = 𝑐𝜇 (
𝜇
𝑙

) (−1)𝜇−𝑙 , 𝑠(𝑃𝑙 , 𝐷𝜏) = ∑ 𝑃(𝑦𝑖
𝜏)𝑙

𝑖∈𝐷𝜏  and 𝑣(𝑃𝑙 , 𝐷!𝜏) = ∑ 𝑃(𝑦𝑗
𝜏)𝑙

𝑗∈𝐷!𝜏 . Note that 

we have 𝑠(𝑃𝑙 , 𝐷𝜏) = ∑ ∑ 𝛿𝑖,𝑡
𝜏 𝑃(𝑦𝑖

𝜏)𝑙𝐿𝑡
𝑖=1

𝑇
𝑡=1  and a similar structure for 𝑣(𝑃𝑙 , 𝐷!𝜏). 

 

S2.4 Calculation of gradient of DeepCNF by back-propagation 

 

 

SFigure 2. Illustration of calculating the gradient of deep convolutional neural network from layer 𝑘 + 1 to layer 

𝑘. 

 

As shown in SFigure 2, we can calculate the neuron error values as well as the gradients of DeepCNF 

model at the 𝑘-th layer by back-propagation as follows. 



𝐸𝑖
𝑘(ℎ) = 𝜂(𝐻𝑖

𝑘(ℎ)) ∗ ∑ [𝐸𝑖(𝑢) ∗ 𝑈𝑎,ℎ]𝑢                         if 𝑘 = 𝐾         () 

𝐸𝑖
𝑘(ℎ) = 𝜂(𝐻𝑖

𝑘(ℎ)) ∗ ∑ ∑ [𝐸𝑖+𝑛
𝑘+1(ℎ′) ∗ 𝑊𝑛

𝑘(ℎ′, ℎ)]
𝑀𝑘+1
ℎ′=1

𝑁𝑘
𝑛=−𝑁𝑘

       if 𝑘 < 𝐾       (12) 

Where 𝜂 is the derivative of the activation function 𝜋. In particular, it is 𝜂(𝑥) = (1 − 𝑥) ∗ 𝑥 and 

𝜂(𝑥) = 1 − 𝑥 ∗ 𝑥 for the sigmoid and tanh function, respectively. 𝑬𝒌 is the neuron error value matrix 

at the 𝑘-th layer, with dimension 𝐿 × 𝑀𝑘. Finally, the gradient of the parameter 𝑊 at the 𝑘-th layer 

is: 

∇𝑊𝑛
𝑘(ℎ,ℎ′)= ∑ [𝐸𝑖

𝑘+1(ℎ) ∗ 𝐻𝑖+𝑛
𝑘 (ℎ′)]𝐿

𝑖=1                          (13) 

 

----------------------------------------------------------------------------------------------------------------------------  

 

S3. Protein features 

 

Given a protein sequence, we use the same feature set for the prediction of SS3/SS8, ACC, and DISO. 

The feature set could be divided into residue-related feature and evolution-related feature. Since our 

server has two prediction modes depending on if sequence profile is used or not. When sequence 

profile is used, each residue has residue- and evolution-related features. Otherwise, only residue-related 

features are used. 

 

Residue-related features. (a) amino acid identity represented as a binary vector of 20 elements; (b) 

amino acid physic-chemical properties (7 values from Table 1 in [6]); (c) propensity of being at 

endpoints of a secondary structure segment (11 values from Table 1 in [7]); (d) correlated contact 

potential (40 values from Table 3 in [8]); and (e) reduced AAindex (5 values from Table 2 in [9]). 

These features may allow for a richer representation of amino acids [10, 11]. 

 

Evolution-related features. We use PSSM (position specific scoring matrix) generated by PSI-BLAST 

[12] to encode the evolutionary information of the sequence under prediction. We also use the HHM 

profile generated by HHpred [13], which is complementary to PSSM to some degree. 

 

----------------------------------------------------------------------------------------------------------------------------  

 

S4. Performance metric 

 

For SS3/SS8 and ACC prediction, the performance of a method is measured by QX accuracy where X 

is the number of labels. Specifically, QX is defined as the percentage of residues for which the 

predicted X labels are correct. For instance, for SS3 and ACC prediction we use Q3 accuracy whereas 

for SS8 we use Q8. 

 

For DISO prediction, we use some complex measurements based on the confusion matrix consisting of 

TP, TN, FP, and FN, for the disorder state under consideration. Specifically, TP (true positives) and TN 

(true negatives) are the numbers of correctly predicted disordered residues and ordered residues, 

respectively; whereas FP (false positives) and FN (false negatives) are the numbers of misclassified 

residues, respectively. Then we use balanced accuracy (bAcc), sensitivity (Sens), specificity (Spec), 

precision (Prec), Matthews correlation coefficient (Mcc), and area under the ROC curve (AUC) as the 

measurements. Specifically, sensitivity and specificity are defined as TP/(TP + FN) and TN/(TN +
FP) , respectively. Precision is defined as TP/(TP + FP) . Balanced accuracy is the average of 

sensitivity and specificity. Mcc is defined as 

(TP ×  TN –  FP ×  FN)/√(TP +  FP)(TN +  FP)(TP +  FN)(TN +  FN). 
 

 

========================================================================= 
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